Software Development
Employer Signaling System by the Greater Washington Partnership

Generated: February 18, 2026

Database, Networking, Distributed System Fundamentals

Label KSAC Description
a Ability to normalize a database through 3rd normal form.
b Define various types of databases
c Ability to perform database schema design.
d Apply SQL data manipulation language such as Select

(From), Insert, Update, Delete, JOIN (inner, outer, full, left,
right), Where, Group By, Order By, etc.

e Knowledge of HTTP, HTTPS, SSL.
f Describe Infrastructure as code.
g Demonstrate an understanding of cloud architecture and

the capabilities of services such as AWS, Azure, IBM,
Oracle and Google.

h Ability to install and configure software.
[Knowledge of computer hardware how compute
resources, storage, and networking interact in cloud and

on-prem environments.

Explain data security in terms of authentication,
authorization, access and auditing.

n Identify and apply modern transport patterns, secure
communication, and API calls.

o] Identify and differentiate structured vs unstructured data.

p Explain how modern distributed systems (microservices,
event-driven systems) operate.

q Explain APl communication patterns (REST, GraphQL,
gRPC).

KSA

ability
knowledge
ability

ability

knowledge
knowledge

knowledge

ability

knowledge

knowledge

skill

knowledge

knowledge

knowledge

Bloom's
Taxonomy
Level

https://ess.greaterwashingtonpartnership.com/
https://greaterwashingtonpartnership.com

Label KSAC Description KSA Bloom's

Taxonomy
Level
r Describe cloud-native application design (functions-as-a- knowledge 1
service, containers, serverless).
S Explain tradeoffs between relational, NoSQL, and vector knowledge 1
databases.
t Describe system observability concepts (metrics, logs, knowledge 1
traces).
u Explain data privacy requirements (Pl handling, data knowledge 1
minimization).
Fundamental Programming Concepts
Label KSAC Description KSA Bloom's
Taxonomy
Level
a Describe uses of primitive data types. knowledge 1
b Write and reason about code using appropriate data types skill 3
for performance, readability, and maintainability.
c Demonstrate fundamental programming skills including skill 3
the use of variables, loops, conditional branching, and
program logic, with an emphasis on error-handling and
input validation.
d Design, implement, test, and debug a program that uses skill 3
each of the following fundamental programming
constructs: basic computation, simple I/O, standard
conditional and iterative structures.
f Design and implement a program that defines functions skill 3
and passes parameters.
g Write a program that uses file I/O to provide persistence skill 2
across multiple executions.
h Choose appropriate conditional and iteration constructs skill 4
for a given programming task.
] Describe the concept of recursion and give examples of knowledge 1

its use.

Label

Label

KSAC Description

Valdiate and test Al-generated code for correctness,
security, and reliability.

Debug unfamiliar codebases using modern tools.

Use version control branching strategies (feature
branches, pull requests).

Explain asynchronous programming models (async/await,
event loops).

Understand memory models relevant to modern
programming languages (managed vs unmanaged).

Fundamental Data Structures

KSAC Description

Apply built-in libraries and interfaces to implement data
structures in real codebases.

Describe common applications for data structures such
as: stack, queue, priority queue, set, and map.

Write programs that use each of the following data
structures: arrays, records/structs, strings, linked lists,
stacks, queues, sets, and maps.

Write programs that can use each of the following data
structures: heaps and B-trees.

Compare alternative implementations of data structures
with respect to performance.

Choose the appropriate data structure for modeling a
given problem.

Identify the costs and benefits of dynamic and static data
structure implementations.

Understand fundamental data management and storage
principles.

KSA

ability

ability

ability

knowledge

knowledge

KSA

ability

knowledge

skill

skill

skill

skill

knowledge

knowledge

Bloom's
Taxonomy
Level
1
1
1
1
1
Bloom's
Taxonomy
Level
1
1
3
3
4
3
1
1

Label KSAC Description KSA Bloom's
Taxonomy
Level

i Explain time and space complexity tradeoffs for choosing knowledge 1
a data structure.

| Understand immutability and persistent data structures in ~ knowledge 1
functional programming contexts.

Development Methods

Label KSAC Description KSA Bloom's
Taxonomy
Level

a Trace the execution of a variety of code segments and knowledge 2
write summaries of their computations.

b Explain why the creation of program components with knowledge 1
minimal defects is important in the production of high-
quality software.

C Describe the factors that influence performance in a knowledge 2
production environment (load, resource intensive tasks,
dependencies on external interfaces).

d Conduct a personal code review (focused on common skill 3
coding errors) on a program component using a provided
checkilist.

e Contribute to a small-team code review focused on skill 3
component correctness.

f Describe how a contract can be used to specify the knowledge 2
behavior of a program component.

g Refactor a program by identifying opportunities to apply skill 2
procedural abstraction.

h Apply a variety of strategies to the testing and debugging ability 4
of simple programs.

[Construct and debug programs using the standard ability 4
libraries available within a chosen programming language.

] Analyze the extent to which another programmer’s code ability 4
meets documentation and programming style standards.

Label KSAC Description KSA Bloom's

Taxonomy
Level
k Apply consistent documentation and program style skill 3
standards that contribute to the readability and
maintainability of software.
Algorithms and Design
Label KSAC Description KSA Bloom's
Taxonomy
Level
a Explain the importance of algorithms in the problem- knowledge 2
solving process.
b Explain how a problem may be solved by multiple knowledge 2
algorithms, each with different properties.
c Create algorithms for solving simple problems. skill 3
d Use a programming language to implement, test, and skill 3
debug algorithms for solving simple problems.
e Implement, test, and debug simple recursive functions skill 3
and procedures.
f Determine whether a recursive or iterative solution is most skill 3
appropriate for a problem.
g Implement a divide-and-conquer algorithm for solving a skill 3
problem.
h Apply the techniques of decomposition to break a skill 3
program into smaller pieces.
[Implement a coherent abstract data type, with loose skill 3
coupling between components and behaviors.
j Evaluate the relative strengths and weaknesses among skill 4
multiple designs or implementations for a problem.
Software Design
Label KSAC Description KSA Bloom's
Taxonomy

Level

Articulate design principles including separation of
concerns, information hiding, coupling and cohesion, and
encapsulation.

Use a design paradigm to design a small-scale application
or service, and explain how system design principles have
been applied in this design.

Construct models of the design of a small-scale
application or service that are appropriate for the
paradigm used to design it.

Describe one or more design patterns that could be
applicable to the design of a simple software within the
context of a single design paradigm.

Discuss and select an appropriate design paradigm for a
simple system for a given scenario.

Create appropriate models for the structure and behavior
of software products from their requirements
specifications.

Explain the relationships between the requirements for a
software product and its design, using appropriate
models.

Describe the software architecture for the design of a
simple software system.

Identify an appropriate software architecture by
differentiating among common software architectures
such as 3-tier, pipe-and-filter, message-queue, and client-
server for a high-level design.

Investigate the impact of software architecture selection
on the design of a simple system.

Apply simple examples of patterns in software design.

Describe a form of refactoring and discuss when it may be
applicable.

Select suitable components for use in the design of a
software product.

Describe pros and cons of building a new component vs
adapting an existing component (e.g. open source) or
buying a component in the design of a software product.

Explain the role of objects in middleware systems and the
relationship with components.

knowledge

skill

ability

knowledge

skill

ability

ability

knowledge

skill

skill

skill

knowledge

ability

knowledge

skill

Refactor code for performance, readability, modularity, or
security.

Understand the user journey and the role it plays in the
software development process.

Understand when to use low code or no code approaches
in the software development process.

Evaluate architectural tradeoffs (latency, cost, scalability).

Explain modern architecture patterns (microservices,
event-driven, serverless).

Understand how privacy, security, and governance
requirements shape architecture.

Software Construction and Analytics

KSAC Description

Identify and evaluate the key components, including data
privacy and ethical considerations, of a use-case or
similar description of some behavior that is required for a
system using the requirements-gathering process.

Describe the requirements engineering process to elicit
and validate behavioral requirements.

Interpret a use-case or similar requirements model for a
simple software system.

Identify both functional and non-functional requirements in
a given requirements specification for a software system.

Apply key elements and common methods for elicitation
and analysis to produce a set of software requirements for
a small-sized software system.

Describe the relative advantages and disadvantages
among several major process models (e.g., waterfall,
iterative, and agile).

Describe the different practices that are key components
of various process models.

ability

knowledge

knowledge

knowledge

knowledge

knowledge

KSA

knowledge

knowledge

skill

skill

skill

knowledge

knowledge

Bloom's
Taxonomy
Level

Label

Label

KSAC Description

Differentiate among the phases of software development
and understand associated roles and responsibilities of
teammates for each.

Ability to executive phases of software development in
iterative and agile manner.

Understand how programming in the large differs from
individual efforts including a large code base, code
reading, builds, context and the documentation of
changes.

Ability to participate in an agile software development
team.

Ability to work on a team; responsibilities of how each role
and how they fit together.

Knowledge of the Agile manifesto.
Understanding the meaning of minimum viable product.
Knowledge of DevOps.

Ability to contextualize, modernize, and optimize both
legacy and emerging software systems.

Apply reverse engineering skills to understand unfamiliar
software.

Understand product metrics, analytics instrumentation,
and event logging.

Understand MVP thinking in agile product delivery.

Apply requirements in iterative cycles rather than linear
processes.

Software Tools and Environment

KSAC Description

KSA

knowledge

ability

knowledge

ability

ability

knowledge
knowledge
knowledge

ability

ability

knowledge

knowledge

ability

KSA

Bloom's
Taxonomy
Level

Bloom's
Taxonomy
Level

Describe the issues that are important in selecting a set of
tools for the development of a particular software system,
including tools for requirements tracking, design modeling,
implementation, build automation, and version control.

Construct, execute and debug programs using a modern
IDE and associated tools such as unit testing tools and
visual debuggers.

Describe how version control can be used to help manage
software release management.

Ability to use Github or similar version control systems.
Ability to use Jira or other similar issue tracking tools.

Ability to use npm, maven or similar package
management tools (e.g. npm, maven, or similar).

Ability to use a source code control tool to manage
configuration items in a small team-based project.

Explain the use of software integration tools.

Describe the benefits of integrating static and dynamic
test tools into the software development environment.

Demonstrate the capability to use software tools in
support of the development of a software product of small
size.

Explain the benefits of and appropriate uses cases for the
usage of containers.

Use Al-assisted development tools while validating
results.

Apply CI/CD pipelines in practice, not just identify CI tools.

Use containerization for development, testing, and
deployment workflows.

Understand modern package management ecosystems
(pip, pnpm, Go modules).

Software Verification and Validation

KSAC Description

knowledge

ability

knowledge

ability
ability

ability

ability

knowledge

knowledge

ability

knowledge

ability

ability

skill

knowledge

KSA

Bloom's
Taxonomy
Level

Distinguish among the different types and levels of testing
(unit, integration, systems, and acceptance).

Describe techniques for identifying significant test cases
for integration, regression and system testing.

Create and document a set of tests for a medium-size
code segment.

Describe how to recognize, create, and automate
continuous regression tests.

Conduct collaborative inspections or reviews of software
source code for common pitfalls or application of coding
standards on a medium sized software project.

Understanding of quality assurance processes, tools, and
quality assurance team role in development.

Build robust code using exception handling mechanisms.
Describe secure coding and defensive coding practices.
Rewrite a simple program to remove common
vulnerabilities, such as buffer overflows, integer overflows

and race conditions.

Apply a defined coding standard in a small software
project.

Adhere to the defined coding standard in the project for
new code.

Write a software component that performs some non-
trivial task and is resilient to common input and run-time
errors.

Be able to give or receive effective peer code reviews of a
single commit or function.

Inspect, research, and review open source code to
identify privacy and security concerns.

Monitor, analyze, and verify the output of generative
models.

Write automated tests using unit, integration, and end-to-
end frameworks.

Use mocking, stubbing, and dependency injection to
isolate test cases.

knowledge

knowledge

skill

knowledge

ability

knowledge

skill

knowledge

ability

skill

skill

ability

skill

ability

ability

skill

ability

Apply static analysis and dynamic analysis tools in the
development lifecycle.

Secure Coding Principles

KSAC Description

Identify common coding errors that lead to insecure

programs (e.g., buffer overflows, memory leaks, malicious

code) and apply strategies for avoiding such errors.
Knowledge of principles of cybersecurity.
Understanding of secure coding principles.

Apply the principles of least privilege, defensive
programming, and fail-safe defaults.

Ability to determine what information can and more
importantly can not be logged (e.g. compliance
considerations).

Write code with logging capabilities.

Awareness of Defensive programming.

Understand basics of securing web apps - SQL Injection
and other input validation (parameterized queries, ORM
safety, and input sanitization).

Ability to determine the origins of open source code.

Understand software bill of materials (SBOM).

Understanding and contextualizing sectoral differences
between developing for public sector and private sector.

Understand supply-chain security (dependency risks,
package integrity).

Understand secure API design, authentication flows
(OAuth2, JWT), and session handling.

ability

KSA

skill

knowledge
knowledge

ability

knowledge

skill

knowledge

knowledge

ability
knowledge

knowledge

knowledge

knowledge

Bloom's
Taxonomy
Level

